Exploring virtual and augmented reality with experimental psychology

About us

We are a research group that investigates immersive technologies, such as virtual and augmented reality in educational settings. We aim to establish results, that can ultimately change how people learn.

Read more

News

What is going on at the Virtual Learning Lab?

Read more

Research Grants

Read more

Publications

Read what we have recently published.

Pedagogical Agents in Educational VR: An in the Wild Study.

Gustav Bøg Petersen, Aske Mottelson, and Guido Makransky.

May 8, 2021
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
Abstract
Expand

Pedagogical agents are theorized to increase humans’ effort to understand computerized instructions. Despite the pedagogical promises of VR, the usefulness of pedagogical agents in VR remains uncertain. Based on this gap, and inspired by global efforts to advance remote learning during the COVID-19 pandemic, we conducted an educational VR study in-the-wild (𝑁 = 161). With a2 × 2 + 1 between subjects design, we manipulated the appearance and behavior of a virtual museum guide in an exhibition about viruses. Factual and conceptual learning outcomes as well as subjective learning experience measures were collected. In general,participants reported high enjoyment and had significant knowledge acquisition. We found that the agent’s appearance and behavior impacted factual knowledge gain. We also report an interaction effect between behavioral and visual realism for conceptual knowledge gain. Our findings nuance classical multimedia learning theories and provide directions for employing agents in immersive learning environments.

Full citation:

Petersen, B., G., Mottelson A., & Makransky G., (2021). Pedagogical Agents in Educational VR: An in the Wild Study. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, 1–13. DOI: https://doi.org/10.1145/3411764.3445760

Abstract
Expand

Virtual Reality (VR) has the potential to enrich education but little is known about how unique affordances of immersive technology might influence leaning and cognition. This study investigates one particular affordance of VR, namely environmental embeddedness, which enables learners to be situated in simulated or imagined settings that contextualize their learning. A sample of 51 university students were administered written learning material in a between-subjects design study, wherein one group read text about sarcoma cancer on a physical pamphlet in the real world, and the other group read identical text on a virtual pamphlet embedded in an immersive VR environment which resembled a hospital room. The study combined advanced EEG measurement techniques, learning tests, and cognitive load measures to compare conditions. Results show that the VR group performed significantly better on a knowledge transfer post-test. However, reading in VR was found to be more cognitively effortful and less time-efficient. Findings suggest the significance of environmental embeddedness for learning, and provide important considerations for the design of educational VR environments, as we remediate learning content from non-immersive to immersive media.

Full citation:

Baceviciute, S., Terkildsen, T., & Makransky, G. (2021). Remediating Learning from Non-immersive to Immersive Media: Using EEG to Investigate the Effects of Environmental Embeddedness on Reading in Virtual Reality. Computers & Education, (ISSN 0360-1315), 104122. https://doi.org/10.1016/j.compedu.2020.104122

Abstract
Expand

There has been a surge in interest and implementation of Immersive Virtual Reality (IVR) based lessons in education and training recently, which has resulted in many studies on the topic. There are recent reviews which summarize this research, but little work has been done that synthesizes the existing findings into a theoretical framework. The Cognitive Affective Model of Immersive Learning (CAMIL) synthesizes existing immersive educational research to describe the process of learning in IVR. The general theoretical framework of the model suggests that instructional methods which are based on evidence from research with less immersive media generalize to learning in IVR. However, the CAMIL builds on evidence that media interacts with method. That is, certain methods which facilitate the affordances of IVR are specifically relevant in this medium. The CAMIL identifies presence and agency as the general psychological affordances of learning in IVR, and describes how immersion, control factors, and representational fidelity facilitate these affordances. The model describes six affective and cognitive factors that can lead to IVR based learning outcomes including interest, motivation, self-efficacy, embodiment, cognitive load, and self-regulation. The model also describes how these factors lead to factual, conceptual, and procedural knowledge acquisition and knowledge transfer. Implications for future research and instructional design are proposed.

Full citation:

Makransky, G., & Petersen, B. G., (2020). The Cognitive Affective Model of Immersive Learning (CAMIL): A Theoretical Research-Based Model of Learning in Immersive Virtual Reality. Educational Psychology Review. DOI: https://doi.org/10.1007/s10648-020-09586-2

A Gender Matching Effect in Learning with Pedagogical Agents in an Immersive Virtual Reality Science Simulation

Guido Makransky, Philip Wismer, and Richard E. Mayer.

January 2, 2021
Journal of Computer Assisted Learning
Abstract
Expand

The main objective of this study is to determine whether boys and girls learn better when the characteristics of the pedagogical agent are matched to the gender of the learner while learning in immersive virtual reality. Sixty-six middle school students (33 females) were randomly assigned to learn about laboratory safety with one of two pedagogical agents: Marie or a drone, who we predicted serve as role models for females and males respectively. The results indicated that there were significant interactions for the dependent variables of performance during learning, retention, and transfer, with girls performing better with Marie (d = 0.98, d = 0.67, and d = 1.03; for performance, retention, and transfer respectively), and boys performing better with the drone (d = -0.41, d = -0.45, d = -0.23, respectively). The results suggest that gender specific design of pedagogical agents may play an important role in VR learning environments.

Full citation:

Makransky, G., Wismer, P., & Mayer, R. (2018). A Gender Matching Effect in Learning with Pedagogical Agents in an Immersive Virtual Reality Science Simulation. Journal of Computer Assisted Learning. 35. 10.1111/jcal.12335.

The virtual field trip: Investigating how to optimize immersive virtual learning in climate change education

Gustav B. Petersen, Sara Klingenberg, Richard E. Mayer, and Guido Makransky.

December 6, 2020
British Journal of Educational Technology
Abstract
Expand

Immersive Virtual Reality (IVR) is being used for educational virtual field trips (VFTs) involving scenarios that may be too difficult, dangerous or expensive to experience in real life. We implemented an immersive VFT within the investigation phase of an inquiry‐based learning (IBL) climate change intervention. Students investigated the consequences of climate change by virtually traveling to Greenland and exploring albedo and greenhouse effects first hand. A total of 102 seventh and eighth grade students were randomly assigned to one of two instructional conditions: (1) narrated pretraining followed by IVR exploration or (2) the same narrated training material integrated within the IVR exploration. Students in both conditions showed significant increases in declarative knowledge, self‐efficacy, interest, STEM intentions, outcome expectations and intentions to change behavior from the pre‐ to post‐assessment. However, there was a significant difference between conditions favoring the pretraining group on a transfer test consisting of an oral presentation to a fictitious UN panel. The findings suggest that educators can choose to present important prerequisite learning content before or during a VFT. However, adding pretraining may lead to better transfer test performance, presumably because it helps reduce cognitive load while learning in IVR.

Full citation:

Petersen, G.B., Klingenberg, S., Mayer, R.E., & Makransky, G. (2020), The virtual field trip: Investigating how to optimize immersive virtual learning in climate change education. Br J Educ Technol. doi:10.1111/bjet.12991

See all publications

Twitter

What is top of our feed?

Our team

Guido Makransky

Founder, Associate Professor

Gustav Bøg Petersen

PhD Fellow

Martin Stolpe Andersen

PhD Fellow

Adéla Plechatá

Lab Manager

Liisalotte Elme

Research Assistant

Michael Atchapero

VR Developer

Andreas Elleby Jespersen

Research Assistant

Oleg Eni

VR Developer

Sara Klingenberg

Student Assistant

Zuzanna Bald

Communications Assistant

Valdemar Stenberdt

Student Assistant

Giorgos Petkakis

Student Assistant

Open positions

There are currently no open positions, but do reach out if you would like to collaborate!

Contact

Contact our team via the contact box below.

Thank you! Your message has been received.

We'll get back to you as soon as possible.
Oops! Something went wrong while submitting the form.
Back to top
Privacy PolicyAccessibliity