Exploring virtual and augmented reality with experimental psychology

About us

We are a research group that investigates immersive technologies, such as virtual and augmented reality in educational settings. We aim to establish results, that can ultimately change how people learn.

Read more

News

What is going on at the Virtual Learning Lab?

Read more

Research Grants

Read more

Publications

Read what we have recently published.

Conducting Unsupervised Virtual Reality User Studies Online

Aske Mottelson, Gustav Bøg Petersen, Klemen Lilija and Guido Makransky

May 28, 2021
Frontiers in Virtual Reality
Abstract
Expand

Conducting user studies online and unsupervised instead of in laboratories gives quick access to a large and inexpensive participant pool. It is however unclear if data sourced this way is valid, and what the best practices for conducting unsupervised VR studies are. The restrictions on laboratory access experienced during COVID-19 further necessitate the development of valid procedures for remote data collection, especially for research fields such as VR that heavily rely on laboratory studies. In this paper we report our experiences with conducting two unsupervised VR studies amidst the pandemic, by recruiting participants online on relevant fora and employing participants’ own standalone VR equipment. We investigate whether it is feasible to collect valid data across in-VR survey responses and hand tracking. We report a good reliability of collected data, which requires only slightly more sanitation than a comparable laboratory study. We synthesize our experiences into practical recommendations for conducting unsupervised VR user studies using online recruitment, which can greatly reduce barriers to conducting empirical VR research and improve the quantity of VR user studies, regardless of laboratory availability.

Full citation:

Mottelson, A., Petersen, G., Lilija, K., & Makransky, G. (2021). Conducting Unsupervised Virtual Reality User Studies Online. Frontiers In Virtual Reality, 2. https://doi.org/10.3389/frvir.2021.681482

Pedagogical Agents in Educational VR: An in the Wild Study.

Gustav Bøg Petersen, Aske Mottelson, and Guido Makransky.

May 8, 2021
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
Abstract
Expand

Pedagogical agents are theorized to increase humans’ effort to understand computerized instructions. Despite the pedagogical promises of VR, the usefulness of pedagogical agents in VR remains uncertain. Based on this gap, and inspired by global efforts to advance remote learning during the COVID-19 pandemic, we conducted an educational VR study in-the-wild (𝑁 = 161). With a2 × 2 + 1 between subjects design, we manipulated the appearance and behavior of a virtual museum guide in an exhibition about viruses. Factual and conceptual learning outcomes as well as subjective learning experience measures were collected. In general,participants reported high enjoyment and had significant knowledge acquisition. We found that the agent’s appearance and behavior impacted factual knowledge gain. We also report an interaction effect between behavioral and visual realism for conceptual knowledge gain. Our findings nuance classical multimedia learning theories and provide directions for employing agents in immersive learning environments.

Full citation:

Petersen, B., G., Mottelson A., & Makransky G., (2021). Pedagogical Agents in Educational VR: An in the Wild Study. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, 1–13. DOI: https://doi.org/10.1145/3411764.3445760

Abstract
Expand

Cognitive load theory (CLT) has been widely used to help understand the process of learning and to design teaching interventions. The Cognitive Load Scale (CLS) developed by Leppink et al., (2013) has emerged as one of the most validated and widely used self-report measures of intrinsic load (IL), extraneous load (EL), and germane load (GL). In this paper we investigated an expansion of the CLS by using a multidimensional conceptualization of the EL construct that is relevant for physical and online teaching environments. The Multidimensional Cognitive Load Scale for Physical and Online Lectures (MCLS-POL) goes beyond the CLS’s operationalization of EL by expanding the EL component which originally included factors related to instructions/explanations with sub-dimensions including EL stemming from noises, and EL stemming from both media and devices within the environment. Through three studies, we investigated the reliability, and internal and external validity of the MCLS-POL using the Partial Credit Model, Confirmatory Factor Analysis, and differences between students either attending a lecture physically or online (Study 2 and 3). The results of Study 1 (N = 250) provide initial evidence for the validity and reliability of the MCLS-POL within a higher education sample, but also highlighted several potential improvements which could be made to the measure. These changes were made before re-evaluating the validity and reliability of the measure in a new sample of higher education psychology students (N = 140, Study 2), and DEVELOPMENT AND VALIDATION OF THE MCLS-POL 3psychological testing students (N = 119, Study 3). Together the studies provide evidence for a multidimensional conceptualization cognitive load and provide evidence of the validity, reliability, and sensitivity of the MCLS-POL and provide suggestions for future research directions.

Full citation:

Andersen, M. S., & Makransky, G. (2021). The Validation and Further Development of the Multidimensional Cognitive Load Scale for Physical and Online Lectures (MCLS-POL). Frontiers in Psychology.

Abstract
Expand

Virtual Reality (VR) has the potential to enrich education but little is known about how unique affordances of immersive technology might influence leaning and cognition. This study investigates one particular affordance of VR, namely environmental embeddedness, which enables learners to be situated in simulated or imagined settings that contextualize their learning. A sample of 51 university students were administered written learning material in a between-subjects design study, wherein one group read text about sarcoma cancer on a physical pamphlet in the real world, and the other group read identical text on a virtual pamphlet embedded in an immersive VR environment which resembled a hospital room. The study combined advanced EEG measurement techniques, learning tests, and cognitive load measures to compare conditions. Results show that the VR group performed significantly better on a knowledge transfer post-test. However, reading in VR was found to be more cognitively effortful and less time-efficient. Findings suggest the significance of environmental embeddedness for learning, and provide important considerations for the design of educational VR environments, as we remediate learning content from non-immersive to immersive media.

Full citation:

Baceviciute, S., Terkildsen, T., & Makransky, G. (2021). Remediating Learning from Non-immersive to Immersive Media: Using EEG to Investigate the Effects of Environmental Embeddedness on Reading in Virtual Reality. Computers & Education, (ISSN 0360-1315), 104122. https://doi.org/10.1016/j.compedu.2020.104122

Abstract
Expand

There has been a surge in interest and implementation of Immersive Virtual Reality (IVR) based lessons in education and training recently, which has resulted in many studies on the topic. There are recent reviews which summarize this research, but little work has been done that synthesizes the existing findings into a theoretical framework. The Cognitive Affective Model of Immersive Learning (CAMIL) synthesizes existing immersive educational research to describe the process of learning in IVR. The general theoretical framework of the model suggests that instructional methods which are based on evidence from research with less immersive media generalize to learning in IVR. However, the CAMIL builds on evidence that media interacts with method. That is, certain methods which facilitate the affordances of IVR are specifically relevant in this medium. The CAMIL identifies presence and agency as the general psychological affordances of learning in IVR, and describes how immersion, control factors, and representational fidelity facilitate these affordances. The model describes six affective and cognitive factors that can lead to IVR based learning outcomes including interest, motivation, self-efficacy, embodiment, cognitive load, and self-regulation. The model also describes how these factors lead to factual, conceptual, and procedural knowledge acquisition and knowledge transfer. Implications for future research and instructional design are proposed.

Full citation:

Makransky, G., & Petersen, B. G., (2020). The Cognitive Affective Model of Immersive Learning (CAMIL): A Theoretical Research-Based Model of Learning in Immersive Virtual Reality. Educational Psychology Review. DOI: https://doi.org/10.1007/s10648-020-09586-2

See all publications

Twitter

What is top of our feed?

Our team

Guido Makransky

Founder, Associate Professor

Aske Mottelson

Post Doc

Clara Vandeweerdt

Post Doc

Gustav Bøg Petersen

PhD Fellow

Martin Stolpe Andersen

PhD Fellow

Liisalotte Elme

Research Assistant

Adéla Plechatá

Research Assistant

Michael Atchapero

VR Developer

Andreas Elleby Jespersen

Research Assistant

Sara Klingenberg

Student Assistant

Zuzanna Bald

Communications Assistant

Valdemar Stenberdt

Student Assistant

Peter Lim

Student Developer

Giorgos Petkakis

Student Assistant

Open positions

There are currently no open positions, but do reach out if you would like to collaborate!

Contact

Contact our team via the contact box below.

Thank you! Your message has been received.

We'll get back to you as soon as possible.
Oops! Something went wrong while submitting the form.
Back to top
Privacy PolicyAccessibliity