Exploring virtual and augmented reality with experimental psychology

About us

We are a research group that investigates immersive technologies, such as virtual and augmented reality in educational settings. We aim to establish results, that can ultimately change how people learn.

Read more

News

What is going on at the Virtual Learning Lab?

Read more

Research Grants

Read more

Publications

Read what we have recently published.

Pedagogical Agents in Educational VR: An in the Wild Study.

Gustav Bøg Petersen, Aske Mottelson, and Guido Makransky.

August 5, 2021
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
Abstract

Pedagogical agents are theorized to increase humans’ effort to understand computerized instructions. Despite the pedagogical promises of VR, the usefulness of pedagogical agents in VR remains uncertain. Based on this gap, and inspired by global efforts to advance remote learning during the COVID-19 pandemic, we conducted an educational VR study in-the-wild (𝑁 = 161). With a2 × 2 + 1 between subjects design, we manipulated the appearance and behavior of a virtual museum guide in an exhibition about viruses. Factual and conceptual learning outcomes as well as subjective learning experience measures were collected. In general,participants reported high enjoyment and had significant knowledge acquisition. We found that the agent’s appearance and behavior impacted factual knowledge gain. We also report an interaction effect between behavioral and visual realism for conceptual knowledge gain. Our findings nuance classical multimedia learning theories and provide directions for employing agents in immersive learning environments.

Full citation:

Petersen, B., G., Mottelson A., & Makransky G., (2021). Pedagogical Agents in Educational VR: An in the Wild Study. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, 1–13. DOI: https://doi.org/10.1145/3411764.3445760

Abstract

Virtual Reality (VR) has the potential to enrich education but little is known about how unique affordances of immersive technology might influence leaning and cognition. This study investigates one particular affordance of VR, namely environmental embeddedness, which enables learners to be situated in simulated or imagined settings that contextualize their learning. A sample of 51 university students were administered written learning material in a between-subjects design study, wherein one group read text about sarcoma cancer on a physical pamphlet in the real world, and the other group read identical text on a virtual pamphlet embedded in an immersive VR environment which resembled a hospital room. The study combined advanced EEG measurement techniques, learning tests, and cognitive load measures to compare conditions. Results show that the VR group performed significantly better on a knowledge transfer post-test. However, reading in VR was found to be more cognitively effortful and less time-efficient. Findings suggest the significance of environmental embeddedness for learning, and provide important considerations for the design of educational VR environments, as we remediate learning content from non-immersive to immersive media.

Full citation:

Baceviciute, S., Terkildsen, T., & Makransky, G. (2021). Remediating Learning from Non-immersive to Immersive Media: Using EEG to Investigate the Effects of Environmental Embeddedness on Reading in Virtual Reality. Computers & Education, (ISSN 0360-1315), 104122. https://doi.org/10.1016/j.compedu.2020.104122

Abstract

There has been a surge in interest and implementation of Immersive Virtual Reality (IVR) based lessons in education and training recently, which has resulted in many studies on the topic. There are recent reviews which summarize this research, but little work has been done that synthesizes the existing findings into a theoretical framework. The Cognitive Affective Model of Immersive Learning (CAMIL) synthesizes existing immersive educational research to describe the process of learning in IVR. The general theoretical framework of the model suggests that instructional methods which are based on evidence from research with less immersive media generalize to learning in IVR. However, the CAMIL builds on evidence that media interacts with method. That is, certain methods which facilitate the affordances of IVR are specifically relevant in this medium. The CAMIL identifies presence and agency as the general psychological affordances of learning in IVR, and describes how immersion, control factors, and representational fidelity facilitate these affordances. The model describes six affective and cognitive factors that can lead to IVR based learning outcomes including interest, motivation, self-efficacy, embodiment, cognitive load, and self-regulation. The model also describes how these factors lead to factual, conceptual, and procedural knowledge acquisition and knowledge transfer. Implications for future research and instructional design are proposed.

Full citation:

Makransky, G., & Petersen, B. G., (2020). The Cognitive Affective Model of Immersive Learning (CAMIL): A Theoretical Research-Based Model of Learning in Immersive Virtual Reality. Educational Psychology Review. DOI: https://doi.org/10.1007/s10648-020-09586-2

The Validation and Further Development of a Multidimensional Cognitive Load Scale for Virtual Environments

Martin S. Andersen and Guido Makransky.

August 6, 2020
Journal of Computer Assisted Learning
Abstract

Measuring cognitive load is important in virtual learning environments (VLE). Thus, valid and reliable measures of cognitive load are important to support instructional design in VLE. Through three studies, we investigated the validity and reliability of Leppink’s Cognitive Load Scale (CLS) and developed the extraneous cognitive load (EL) dimension into three sub-scales relevant for VLE: EL instructions, EL interaction, and EL environment. We investigated the validity of the measures using the Partial Credit Model (PCM), Confirmatory Factor Analysis (CFA), and correlations with retention tests. Study 1 (n = 73) investigated the adapted version of the CLS. Study 2 describes the development and validation of the Multidimensional Cognitive Load Scale for Virtual Environments (MCLSVE), with 140 students in higher education. Study 3 tested the generalizability of the results with 121 higher education students in a more complicated VLE. The results provide initial evidence for the validity and reliability of the MCLSVE.

Full citation:

Andersen, M.S., & Makransky, G. (2020). The Validation and Further Development of a Multidimensional Cognitive Load Scale for Virtual Environments. Journal of Computer Assisted Learning

Investigating the effect of teaching as a generative learning strategy when learning through desktop and immersive VR: A media and methods experiment

Sara Klingenberg, Maria Mønster Jørgensen, Gert Dandanell, Karen Skriver, Aske Mottelson, and Guido Makransky.

August 1, 2020
British Journal of Educational Technology
Abstract

Immersive virtual reality (IVR) simulations for education have been found to increase affective outcomes compared to traditional media, but the effects on learning are mixed. As reflection has previously shown to enhance learning in traditional media, we investigated the efficacy of appropriate reflection exercises for IVR. In a 2 × 2 mixed‐methods experiment, 89 (61 female) undergraduate biochemistry students learned about the electron transport chain through desktop virtual reality (DVR) and IVR (media conditions). Approximately, half of each group engaged in a subsequent generative learning strategy (GLS) of teaching in pairs (method conditions). A significant interaction between media and methods illustrated that the GLS of teaching significantly improved transfer (d = 1.26), retention (d = 0.60) and self‐efficacy (d = 0.82) when learning through IVR, but not DVR. In the second part of the study, students switched media conditions and the experiment was repeated. This time, significant main effects favoring the IVR group on the outcomes of intrinsic motivation (d = 0.16), perceived enjoyment (d = 0.94) and presence (d = 1.29) were observed, indicating that students preferred IVR after having experienced both media conditions. The results support the view that methods enable media that affect learning and that the GLS of teaching is specifically relevant for IVR.

Full citation:

Klingenberg, S., Jørgensen, M., Dandanell, G., Skriver, K., Mottelson, A., & Makransky, G., 2020. Investigating the effect of teaching as a generative learning strategy when learning through desktop and immersive VR: A media and methods experiment. British Journal of Educational Technology.

See all publications

Twitter

What is top of our feed?

Our team

Guido Makransky

Founder, Associate Professor

Aske Mottelson

Post Doc

Gustav Bøg Petersen

PhD Fellow

Martin Stolpe Andersen

PhD Fellow

Sarune Baceviciute

PhD Fellow

Liisalotte Elme

Research Assistant

Adéla Plechatá

Research Assistant

Michael Atchapero

VR Developer

Sara Klingenberg

Student Assistant

Zuzanna Bald

Communications Assistant

Valdemar Stenberdt

Student Assistant

Peter Lim

Student Developer

Giorgos Petkakis

Student Assistant

Open positions

There are currently no open positions, but do reach out if you would like to collaborate!

Contact

Contact the team via the contact box below

Thank you! Your message has been received.

We'll get back to you as soon as possible.
Oops! Something went wrong while submitting the form.
Back to top
Privacy PolicyAccessibliity