Exploring virtual and augmented reality with experimental psychology

About us

We are a research group that investigates immersive technologies, such as virtual and augmented reality in educational settings. We aim to establish results, that can ultimately change how people learn.

Read more

News

What is going on at the Virtual Learning Lab?

Read more

Our Research Areas

See the projects that we have been working on!

Our lab is dedicated to studying how VR affects learning, specifically we investigate what makes learning in immersive VR effective, what is the role of virtual humans and how can we develop training scenarios. Furthermore, we use this knowledge to investigate the role of VR in promoting sustainable attitudes or other prosocial behavioral changes. Click on the categories below to see the projects described in more detail:

Research Grants

Read more

Publications

Read what we have recently published.

Why just Experience the Future when you can Change it: Virtual Reality can Increase Pro-Environmental Food Choices through Self-Efficacy

Adéla Plechatá, Thomas Morton, Federico J.A. Perez-Cueto and Guido Makransky

May 31, 2022
Technology, Mind and Behaviour
Abstract
Expand

Immersive Virtual Reality (IVR) has the potential to play an important role in increasing environmental literacy by providing individuals the opportunity to experience plausible scenarios of climate change directly. However, there is currently little evidence for the role of IVR, and for specific design features, in increasing environmental self-efficacy. The main objective of this study was to investigate the effects of an IVR intervention on pro-environmental intentions, knowledge, and transfer. A total of 90 middle school students were randomly assigned to two IVR intervention conditions: 1) Awareness, in which students experience the impact of their current food choices on future environmental change; 2) Awareness + Efficacy, in which students had the opportunity to change their food choices and experience the positive impact of this on future environmental change. Both interventions resulted in significant increases in intentions, knowledge, and transfer. However, the Awareness + Efficacy condition resulted in further significant increases in intentions and transfer than the Awareness condition. Finally, mediation analysis showed that the effect of the Awareness + Efficacy condition on intentions and transfer was fully mediated by self-efficacy. These results suggest that allowing students not just to experience climate change but also to see the positive impact of changed personal choices can maximize the effectiveness of IVR on intentions and transfer.

Full citation:

Plechatá, A., Morton, T., Perez-Cueto, F., Makransky, G. (2022). Why just Experience the Future when you can Change it: Virtual Reality can Increase Pro-Environmental Food Choices through Self-Efficacy.

Abstract
Expand

This study describes and investigates the immersion principle in multimedia learning. A sample of 102 middle school students took a virtual field trip to Greenland via a head mounted display (HMD) or a 2D video as an introductory lesson within a 6-lesson inquiry-based climate change intervention. The HMD group scored significantly higher than the video group on presence (d = 1.43), enjoyment (d = 1.10), interest (d = .57), and retention in an immediate (d = .61) and delayed posttest (d = .70). A structural equation model indicated that enjoyment mediated the pathway from instructional media to immediate posttest, and interest mediated the pathway from instructional media to delayed posttest score, indicating that these factors may play different roles in the learning process with immersive media. This work contributes to the cognitive affective model of immersive learning, and suggests that immersive lessons can have positive longitudinal effects for learning.

Full citation:

Makransky, G., Mayer, R.E. Benefits of Taking a Virtual Field Trip in Immersive Virtual Reality: Evidence for the Immersion Principle in Multimedia Learning. Educ Psychol Rev (2022). https://doi.org/10.1007/s10648-022-09675-4

Virtual reality reduces COVID-19 vaccine hesitancy in the wild: A randomized trial

Clara Vandeweerdt, Tiffany Luong, Michael Atchapero, Aske Mottelson, Christian Holz, Guido Makransky and Robert Böhm

March 17, 2022
Scientific Reports
Abstract
Expand

Vaccine hesitancy poses one of the largest threats to global health. Informing people about the collective benefit of vaccination has great potential in increasing vaccination intentions. This research investigates the potential for engaging experiences in immersive virtual reality (VR) to strengthen participants’ understanding of community immunity, and therefore, their intention to get vaccinated. In a pre-registered lab-in-the-field intervention study, participants were recruited in a public park (tested: n = 232, analyzed: n = 222). They were randomly assigned to experience the collective benefit of community immunity in a gamified immersive virtual reality environment (2/3 of sample), or to receive the same information via text and images (1/3 of sample). Before and after the intervention, participants indicated their intention to take up a hypothetical vaccine for a new COVID-19 strain (0–100 scale) and belief in vaccination as a collective responsibility (1–7 scale). The study employs a crossover design (participants later received a second treatment), but the primary outcome is the effect of the first treatment on vaccination intention. After the VR treatment, for participants with less-than-maximal vaccination intention, intention increases by 9.3 points (95% CI: 7.0 to 11.5, p < 0.001). The text-and- image treatment raises vaccination intention by 3.3 points (difference in effects: 5.8, 95% CI: 2.0 to 9.5, p = 0.003). The VR treatment also increases collective responsibility by 0.82 points (95% CI: 0.37 to 1.27, p < 0.001). The results suggest that VR interventions are an effective tool for boosting vaccination intention, and that they can be applied “in the wild”—providing a complementary method for vaccine advocacy.

Full citation:

Vanderveert, C., Luong, T., Atchapero, M., Mottelson, A., Holz, C., Makransky, G., & Böhm, R. (2022). Virtual reality reduces COVID-19 vaccine hesitancy in the wild: A randomized trial. Scientific Reports.

Virtual Reality Enhances Safety Training in the Maritime Industry: An Organizational Training Experiment with a non-WEIRD sample

Guido Makransky and Sara Klingenberg

March 13, 2022
Journal of Computer Assisted Learning
Abstract
Expand

Many industries struggle with training dynamic risk assessment, and how to bridge the gap between safety training and behavior in real life scenarios. In this article, we focus on dynamic risk assessment during a mooring operation and investigate the potential value of using immersive virtual reality (VR) simulations compared to standard training procedures in an international maritime training organization. In a pilot study, we compared two ways of implementing a VR simulation (stand-alone or with post-simulation reflection) to a manual and a personal trainer condition in a between-subjects design with 86 students in a maritime school. Based on the results we compared the stand-alone VR simulation to the personal trainer condition in a between-subjects design in a non-Western, Educated, Industrialized, Rich, and Democratic (WEIRD) sample of 28 seafarers from the Kiribati Islands at an international maritime training organization. The VR simulation group reported significantly higher perceived enjoyment (d = 1.28), intrinsic motivation (d = 0.96), perceived learning (d = 0.90), and behavioral change (d = 0.88), and significantly lower extraneous cognitive load (d = 0.82) compared to the personal trainer group, but the differences in self-efficacy, and safety attitudes were not significant. The results support the value of using VR to train procedures that are difficult to train in the real world and suggest that VR technologies can be useful for providing just in time training anywhere, anytime, in a global market where employees are increasingly cross-cultural and dislocated.

Full citation:

Makransky, G. & Klingenberg, S. (2022). Virtual Reality Enhances Safety Training in the Maritime Industry: An Organizational Training Experiment with a non-WEIRD sample. Journal of Computer Assisted Learning. 10.1111/jcal.12670.

A study of how immersion and interactivity drive VR learning

Gustav B. Petersen, Giorgos Petkakis and Guido Makransky

January 4, 2022
Computers & Education
Abstract
Expand

Even though learning refers to both a process and a product, the former tends to be overlooked in educational virtual reality (VR) research. This study examines the process of learning with VR technology using the Cognitive Affective Model of Immersive Learning (CAMIL) as its framework. The CAMIL theorizes that two technological features of VR, interactivity and immersion, influence a number of cognitive and affective variables that may facilitate or hinder learning. In addition, VR studies often involve media comparisons that make it difficult to disentangle the relative effects of technological features on learning. Therefore, this study also aims to provide insights concerning the unique and combined effects of interactivity and immersion on the cognitive and affective variables specified by CAMIL. We employed a 2 × 2 between-subjects design (N = 153) and manipulated the degree of interactivity and immersion during a virtual lesson on the topic of viral diseases. Analyses of variance (ANOVAs) were used to examine the effects of interactivity and immersion on our variables of interest, and structural equation modeling (SEM) was used to assess the process of learning as predicted by the CAMIL. The results indicated that the process of learning involves situational interest and embodied learning. Main effects of interactivity and/or immersion on cognitive load, situational interest, and physical presence are also reported in addition to interaction effects between immersion and interactivity on agency and embodied learning. The findings provide evidence for the CAMIL and suggest important additions to the model. These findings can be used to provide a better understanding of the process of learning in immersive VR and guide future immersive learning research.

Full citation:

Petersen, G., Petkakis, G., & Makransky, G. (2022). A study of how immersion and interactivity drive VR learning. Computers & Education, 179, 104429. doi: 10.1016/j.compedu.2021.104429

See all publications

Twitter

What is top of our feed?

Our team

Guido Makransky

Founder, Associate Professor

Adéla Plechatá

Post Doc, Lab Manager

Gustav Bøg Petersen

PhD Fellow

Michael Atchapero

VR Developer

Oleg Eni

VR Developer

Andreas Elleby Jespersen

Research Assistant

Zuzanna Bald

Student Assistant

Sara Klingenberg

Student Assistant

Alice Kwakye

Student Assistant

Valdemar Stenberdt

Student Assistant

Andrew Dai

Intern

Xi-Ning Wang

Intern

Open positions

There are currently no open positions, but do reach out if you would like to collaborate!

Contact

Contact our team via the contact box below.

Thank you! Your message has been received.

We'll get back to you as soon as possible.
Oops! Something went wrong while submitting the form.
Back to top
Privacy PolicyAccessibliity