Publications

Read what we have recently published.

Fostering science interests through head‐mounted displays

Martin Stolpe Andersen, Sara Klingenberg, Gustav Bøg Petersen, Peter A. Creed, Guido Makransky

October 25, 2022

Journal of Computer Assisted Learning

Abstract

Background Research suggests that head‐mounted displays (HMD) can spark situational interest when they are used to provide science learning experiences that are not possible in traditional classroom settings. However, few studies have investigated the lasting effects of using HMDs in an authentic instructional intervention. Objectives We investigated the effects of a one‐time experience of a virtual field trip to Greenland in a sample of 105 middle school students. Methods Students used either a standard 2D video (video condition; N = 50) or an HMD (HMD condition; N = 55) as part of a six‐lesson educational activity on the topic of climate change. Informed by social cognitive career theory (SCCT), we investigated the effects of the different conditions (video vs. HMD) on the outcomes of self‐efficacy, outcome expectations, interest, and science intentions across three time points. Results and Conclusions The results showed that using the HMD‐based virtual field trip, compared to the video, had a positive immediate effect on self‐efficacy and interest, and total later effects on self‐efficacy, outcome expectations, and interest an average of two and a half weeks after the virtual field trip. The results suggest that HMD‐based virtual field trips can influence self‐efficacy, outcome expectations, and interest more than a video‐based virtual field trip when measured approximately two and a half weeks after the intervention.

Full citation:

Andersen, M. S., Klingenberg, S., Petersen, G. B., Creed, P. A., & Makransky, G. (2022). Fostering science interests through head‐mounted displays. Journal of Computer Assisted Learning. https://doi.org/10.1111/jcal.12749

A randomized trial testing the effectiveness of virtual reality as a tool for pro-environmental dietary change

Adéla Plechatá, Thomas Morton, Federico J.A. Perez-Cueto and Guido Makransky

August 22, 2022

Nature Scientific Reports

Abstract

This study investigates the impact of an efficacy-focused virtual reality (VR) intervention designed according to instructional design principles on eating behavior. In the preregistered intervention study, psychology students were randomly assigned to nine seminar blocks. Employing parallel design, they were allocated to either a VR intervention to experience the environmental impact of food behavior (1) and alter the future by revising food choices (2) or to a passive control condition. The data from 123 participants (78% female, mean age 25.03, SD = 6.4) were analyzed to investigate the effect of the VR intervention on dietary footprint measured from 1 week before to 1 week after the intervention. The VR intervention decreased individual dietary footprints (d = 0.4) significantly more than the control condition. Similarly, the VR condition increased response efficacy and knowledge to a larger extent compared to the control. For knowledge, the effect persisted for 1 week. The VR intervention had no impact on intentions, self-efficacy, or psychological distance. Additional manipulation of normative feedback enhanced self-efficacy; however, manipulation of geographical framing did not influence psychological distance.

Full citation:

Plechatá, A., Morton, T., Perez-Cueto, F.J.A., & Makransky, G. (2022). A randomized trial testing the effectiveness of virtual reality as a tool for pro-environmental dietary change. Scientific Reports, 12, 14315. https://doi.org/10.1038/s41598-022-18241-5

The Promise and Pitfalls of Learning in Immersive Virtual Reality

Richard E. Mayer, Guido Makransky, Jocelyn Parong

August 18, 2022

International Journal of Human–Computer Interaction

Abstract

Can immersive virtual reality (IVR) serve as an effective venue for learning and training? The promise of learning in IVR lies in its affordances for motivating learners to engage in generative processing (i.e., cognitive processing aimed at making sense of the material). The pitfall of learning in IVR is that it can distract learners so they engage in extraneous processing (i.e., cognitive processing that does not support the instructional goal). This paper reviews (1) media comparison research we have conducted on the effectiveness of learning academic content and skills in IVR versus learning with conventional media and (2) value-added research we have conducted concerning which features can improve the instructional effectiveness of learning in IVR. The paper includes implications for practice and for further work in the area. Overall, the paper focuses on the challenges associated with determining how to reduce the distracting aspects of IVR, maintain the motivating aspects of IVR, and guide the learner towards the core instructional material.


Full citation:

Mayer, R. E., Makransky, G., & Parong, J. (2022). The Promise and Pitfalls of Learning in Immersive Virtual Reality. International Journal of Human–Computer Interaction. https://doi.org/10.1080/10447318.2022.2108563

Pipetting in Virtual Reality Can Predict Real-Life Pipetting Performance

Gustav Bøg Petersen, Sara Klingenberg, Guido Makransky

July 21, 2022

Technology, Mind, and Behavior

Abstract

Can a virtual reality (VR) simulation promote acquisition of scientific skills with real-life practicability? In order to answer this question, we conducted (I) an online study (N = 126) and (II) a field study at a high school (N = 47). Study I focused on the instructional design of VR by comparing the effects of different pedagogical agents on acquiring pipetting skills. We found no significant differences between the conditions, that is, it did not seem to make a difference whether the pedagogical agent was present or not, or if it demonstrated the procedure or not. Study II focused on transfer of skills learned in VR to real-life with the addition of a control group who were taught by a real-life instructor. The results indicated that performance in VR can predict performance on a real-life transfer test. However, comparisons between the two groups showed that the students who received virtual training made more errors, experienced more extraneous cognitive load, and learned less compared to the students who were taught by the real-life instructor. Across both studies, all students experienced an increase in self-efficacy from prior to after the intervention, although the students taught by the real-life instructor experienced the largest increases in Study II. Hence, VR should not replace traditional ways of teaching scientific procedures. Rather, it can be a complement to traditional teaching that can increase accessibility.

Full citation:

Petersen, G. B., Klingenberg, S., & Makransky, G. (2022). Pipetting in Virtual Reality Can Predict Real-Life Pipetting Performance. Technology, Mind, and Behavior, 3(3). https://doi.org/10.1037/tmb0000076

Immersive Virtual Reality in STEM: Is IVR an Effective Learning Medium and Does Adding Self-Explanation after a Lesson Improve Learning Outcomes?

Elme, L., Jørgensen, M. L. M., Dandanell, G., Mottelson, A., Makransky, G.

July 18, 2022

Educational Technology Research and Development

Abstract

The goal of the current study was to investigate the effects of an immersive virtual reality (IVR) science simulation on learning in a higher educational setting, and to assess whether using self-explanation has benefits for knowledge gain. A sample of 79 undergraduate biology students (40 females, 37 males, 2 non-binary) learned about next-generation sequencing using an IVR simulation that lasted approximately 45 min. Students were randomly assigned to one of two instructional conditions: self-explanation (n = 41) or control (n = 38). The self-explanation group engaged in a 10 min written self-explanation task after the IVR biology lesson, while the control group rested. The results revealed that the IVR simulation led to a significant increase in knowledge from the pre- to post-test (ßPosterior = 3.29). There were no differences between the self-explanation and control groups on knowledge gain, procedural, or conceptual transfer. Finally, the results indicate that the self-explanation group reported significantly higher intrinsic cognitive load (ßPosterior = .35), and extraneous cognitive load (ßPosterior = .37), and significantly lower germane load (ßPosterior =  − .38) than the control group. The results suggest that the IVR lesson was effective for learning, but adding a written self-explanation task did not increase learning after a long IVR lesson.

Full citation:

Elme, L., Jørgensen, M. L. M., Dandanell, G., Mottelson, A., &Makransky, G. (2022). Immersive Virtual Reality in STEM: Is IVR an Effective Learning Medium and Does Adding Self-Explanation after a Lesson Improve Learning Outcomes? Educational Technology Research and Development.

Abstract

This study describes and investigates the immersion principle in multimedia learning. A sample of 102 middle school students took a virtual field trip to Greenland via a head mounted display (HMD) or a 2D video as an introductory lesson within a 6-lesson inquiry-based climate change intervention. The HMD group scored significantly higher than the video group on presence (d = 1.43), enjoyment (d = 1.10), interest (d = .57), and retention in an immediate (d = .61) and delayed posttest (d = .70). A structural equation model indicated that enjoyment mediated the pathway from instructional media to immediate posttest, and interest mediated the pathway from instructional media to delayed posttest score, indicating that these factors may play different roles in the learning process with immersive media. This work contributes to the cognitive affective model of immersive learning, and suggests that immersive lessons can have positive longitudinal effects for learning.

Full citation:

Makransky, G., Mayer, R.E. Benefits of Taking a Virtual Field Trip in Immersive Virtual Reality: Evidence for the Immersion Principle in Multimedia Learning. Educ Psychol Rev (2022). https://doi.org/10.1007/s10648-022-09675-4

A study of how immersion and interactivity drive VR learning

Gustav B. Petersen, Giorgos Petkakis and Guido Makransky

January 4, 2022

Computers & Education

Abstract

Even though learning refers to both a process and a product, the former tends to be overlooked in educational virtual reality (VR) research. This study examines the process of learning with VR technology using the Cognitive Affective Model of Immersive Learning (CAMIL) as its framework. The CAMIL theorizes that two technological features of VR, interactivity and immersion, influence a number of cognitive and affective variables that may facilitate or hinder learning. In addition, VR studies often involve media comparisons that make it difficult to disentangle the relative effects of technological features on learning. Therefore, this study also aims to provide insights concerning the unique and combined effects of interactivity and immersion on the cognitive and affective variables specified by CAMIL. We employed a 2 × 2 between-subjects design (N = 153) and manipulated the degree of interactivity and immersion during a virtual lesson on the topic of viral diseases. Analyses of variance (ANOVAs) were used to examine the effects of interactivity and immersion on our variables of interest, and structural equation modeling (SEM) was used to assess the process of learning as predicted by the CAMIL. The results indicated that the process of learning involves situational interest and embodied learning. Main effects of interactivity and/or immersion on cognitive load, situational interest, and physical presence are also reported in addition to interaction effects between immersion and interactivity on agency and embodied learning. The findings provide evidence for the CAMIL and suggest important additions to the model. These findings can be used to provide a better understanding of the process of learning in immersive VR and guide future immersive learning research.

Full citation:

Petersen, G., Petkakis, G., & Makransky, G. (2022). A study of how immersion and interactivity drive VR learning. Computers & Education, 179, 104429. doi: 10.1016/j.compedu.2021.104429

Investigating the redundancy principle in immersive virtual reality environments: An eye-tracking and EEG study

Sarune Baceviciute, Gordon Lucas, Thomas Terkildsen, Guido Makransky

August 25, 2021

Journal of Computer Assisted Learning

Abstract

Background The increased availability of immersive virtual reality (IVR) has led to a surge of immersive technology applications in education. Nevertheless, very little is known about how to effectively design instruction for this new media, so that it would benefit learning and associated cognitive processing. Objectives This experiment explores if and how traditional instructional design principles from 2D media translate to IVR. Specifically, it focuses on studying the underlying mechanisms of the redundancy‐principle, which states that presenting the same information concurrently in two different sensory channels can cause cognitive overload and might impede learning. Methods A total of 73 participants learned through a specifically‐designed educational IVR application in three versions: (1) auditory representation format, (2) written representation format, and (3) a redundancy format (i.e. both written and auditory formats). The study utilized advanced psychophysiological methods of Electroencephalography (EEG) and eye‐tracking (ET), learning measures and self‐report scales. Results and Conclusions Results show that participants in the redundancy condition performed equally well on retention and transfer post‐tests. Similarly, results from the subjective measures, EEG and ET suggest that redundant content was not found to be more cognitively demanding than written content alone. Implications Findings suggest that the redundancy effect might not generalize to VR as originally anticipated in 2D media research, providing direct implications to the design of IVR tools for education.

Full citation:

Baceviciute, S., Lucas, G., Terkildsen, T., & Makransky, G. (2021). Investigating the redundancy principle in immersive virtual reality environments: An eye‐tracking and EEG study. Journal Of Computer Assisted Learning, 38(1), 120-136. doi: 10.1111/jcal.12595

Abstract

Virtual Reality (VR) has the potential to enrich education but little is known about how unique affordances of immersive technology might influence leaning and cognition. This study investigates one particular affordance of VR, namely environmental embeddedness, which enables learners to be situated in simulated or imagined settings that contextualize their learning. A sample of 51 university students were administered written learning material in a between-subjects design study, wherein one group read text about sarcoma cancer on a physical pamphlet in the real world, and the other group read identical text on a virtual pamphlet embedded in an immersive VR environment which resembled a hospital room. The study combined advanced EEG measurement techniques, learning tests, and cognitive load measures to compare conditions. Results show that the VR group performed significantly better on a knowledge transfer post-test. However, reading in VR was found to be more cognitively effortful and less time-efficient. Findings suggest the significance of environmental embeddedness for learning, and provide important considerations for the design of educational VR environments, as we remediate learning content from non-immersive to immersive media.

Full citation:

Baceviciute, S., Terkildsen, T., & Makransky, G. (2021). Remediating Learning from Non-immersive to Immersive Media: Using EEG to Investigate the Effects of Environmental Embeddedness on Reading in Virtual Reality. Computers & Education, (ISSN 0360-1315), 104122. https://doi.org/10.1016/j.compedu.2020.104122

Abstract

There has been a surge in interest and implementation of Immersive Virtual Reality (IVR) based lessons in education and training recently, which has resulted in many studies on the topic. There are recent reviews which summarize this research, but little work has been done that synthesizes the existing findings into a theoretical framework. The Cognitive Affective Model of Immersive Learning (CAMIL) synthesizes existing immersive educational research to describe the process of learning in IVR. The general theoretical framework of the model suggests that instructional methods which are based on evidence from research with less immersive media generalize to learning in IVR. However, the CAMIL builds on evidence that media interacts with method. That is, certain methods which facilitate the affordances of IVR are specifically relevant in this medium. The CAMIL identifies presence and agency as the general psychological affordances of learning in IVR, and describes how immersion, control factors, and representational fidelity facilitate these affordances. The model describes six affective and cognitive factors that can lead to IVR based learning outcomes including interest, motivation, self-efficacy, embodiment, cognitive load, and self-regulation. The model also describes how these factors lead to factual, conceptual, and procedural knowledge acquisition and knowledge transfer. Implications for future research and instructional design are proposed.

Full citation:

Makransky, G., & Petersen, B. G., (2020). The Cognitive Affective Model of Immersive Learning (CAMIL): A Theoretical Research-Based Model of Learning in Immersive Virtual Reality. Educational Psychology Review. DOI: https://doi.org/10.1007/s10648-020-09586-2

A Gender Matching Effect in Learning with Pedagogical Agents in an Immersive Virtual Reality Science Simulation

Guido Makransky, Philip Wismer, and Richard E. Mayer.

January 2, 2021

Journal of Computer Assisted Learning

Abstract

The main objective of this study is to determine whether boys and girls learn better when the characteristics of the pedagogical agent are matched to the gender of the learner while learning in immersive virtual reality. Sixty-six middle school students (33 females) were randomly assigned to learn about laboratory safety with one of two pedagogical agents: Marie or a drone, who we predicted serve as role models for females and males respectively. The results indicated that there were significant interactions for the dependent variables of performance during learning, retention, and transfer, with girls performing better with Marie (d = 0.98, d = 0.67, and d = 1.03; for performance, retention, and transfer respectively), and boys performing better with the drone (d = -0.41, d = -0.45, d = -0.23, respectively). The results suggest that gender specific design of pedagogical agents may play an important role in VR learning environments.

Full citation:

Makransky, G., Wismer, P., & Mayer, R. (2018). A Gender Matching Effect in Learning with Pedagogical Agents in an Immersive Virtual Reality Science Simulation. Journal of Computer Assisted Learning. 35. 10.1111/jcal.12335.

The virtual field trip: Investigating how to optimize immersive virtual learning in climate change education

Gustav B. Petersen, Sara Klingenberg, Richard E. Mayer, and Guido Makransky.

December 6, 2020

British Journal of Educational Technology

Abstract

Immersive Virtual Reality (IVR) is being used for educational virtual field trips (VFTs) involving scenarios that may be too difficult, dangerous or expensive to experience in real life. We implemented an immersive VFT within the investigation phase of an inquiry‐based learning (IBL) climate change intervention. Students investigated the consequences of climate change by virtually traveling to Greenland and exploring albedo and greenhouse effects first hand. A total of 102 seventh and eighth grade students were randomly assigned to one of two instructional conditions: (1) narrated pretraining followed by IVR exploration or (2) the same narrated training material integrated within the IVR exploration. Students in both conditions showed significant increases in declarative knowledge, self‐efficacy, interest, STEM intentions, outcome expectations and intentions to change behavior from the pre‐ to post‐assessment. However, there was a significant difference between conditions favoring the pretraining group on a transfer test consisting of an oral presentation to a fictitious UN panel. The findings suggest that educators can choose to present important prerequisite learning content before or during a VFT. However, adding pretraining may lead to better transfer test performance, presumably because it helps reduce cognitive load while learning in IVR.

Full citation:

Petersen, G.B., Klingenberg, S., Mayer, R.E., & Makransky, G. (2020), The virtual field trip: Investigating how to optimize immersive virtual learning in climate change education. Br J Educ Technol. doi:10.1111/bjet.12991

Conducting Unsupervised Virtual Reality User Studies Online

Aske Mottelson, Gustav Bøg Petersen, Klemen Lilija and Guido Makransky

November 28, 2020

Frontiers in Virtual Reality

Abstract

Conducting user studies online and unsupervised instead of in laboratories gives quick access to a large and inexpensive participant pool. It is however unclear if data sourced this way is valid, and what the best practices for conducting unsupervised VR studies are. The restrictions on laboratory access experienced during COVID-19 further necessitate the development of valid procedures for remote data collection, especially for research fields such as VR that heavily rely on laboratory studies. In this paper we report our experiences with conducting two unsupervised VR studies amidst the pandemic, by recruiting participants online on relevant fora and employing participants’ own standalone VR equipment. We investigate whether it is feasible to collect valid data across in-VR survey responses and hand tracking. We report a good reliability of collected data, which requires only slightly more sanitation than a comparable laboratory study. We synthesize our experiences into practical recommendations for conducting unsupervised VR user studies using online recruitment, which can greatly reduce barriers to conducting empirical VR research and improve the quantity of VR user studies, regardless of laboratory availability.

Full citation:

Mottelson, A., Petersen, G., Lilija, K., & Makransky, G. (2021). Conducting Unsupervised Virtual Reality User Studies Online. Frontiers In Virtual Reality, 2. https://doi.org/10.3389/frvir.2021.681482

Abstract

Cognitive load theory (CLT) has been widely used to help understand the process of learning and to design teaching interventions. The Cognitive Load Scale (CLS) developed by Leppink et al., (2013) has emerged as one of the most validated and widely used self-report measures of intrinsic load (IL), extraneous load (EL), and germane load (GL). In this paper we investigated an expansion of the CLS by using a multidimensional conceptualization of the EL construct that is relevant for physical and online teaching environments. The Multidimensional Cognitive Load Scale for Physical and Online Lectures (MCLS-POL) goes beyond the CLS’s operationalization of EL by expanding the EL component which originally included factors related to instructions/explanations with sub-dimensions including EL stemming from noises, and EL stemming from both media and devices within the environment. Through three studies, we investigated the reliability, and internal and external validity of the MCLS-POL using the Partial Credit Model, Confirmatory Factor Analysis, and differences between students either attending a lecture physically or online (Study 2 and 3). The results of Study 1 (N = 250) provide initial evidence for the validity and reliability of the MCLS-POL within a higher education sample, but also highlighted several potential improvements which could be made to the measure. These changes were made before re-evaluating the validity and reliability of the measure in a new sample of higher education psychology students (N = 140, Study 2), and DEVELOPMENT AND VALIDATION OF THE MCLS-POL 3psychological testing students (N = 119, Study 3). Together the studies provide evidence for a multidimensional conceptualization cognitive load and provide evidence of the validity, reliability, and sensitivity of the MCLS-POL and provide suggestions for future research directions.

Full citation:

Andersen, M. S., & Makransky, G. (2021). The Validation and Further Development of the Multidimensional Cognitive Load Scale for Physical and Online Lectures (MCLS-POL). Frontiers in Psychology.

The Validation and Further Development of a Multidimensional Cognitive Load Scale for Virtual Environments

Martin S. Andersen and Guido Makransky.

August 6, 2020

Journal of Computer Assisted Learning

Abstract

Measuring cognitive load is important in virtual learning environments (VLE). Thus, valid and reliable measures of cognitive load are important to support instructional design in VLE. Through three studies, we investigated the validity and reliability of Leppink’s Cognitive Load Scale (CLS) and developed the extraneous cognitive load (EL) dimension into three sub-scales relevant for VLE: EL instructions, EL interaction, and EL environment. We investigated the validity of the measures using the Partial Credit Model (PCM), Confirmatory Factor Analysis (CFA), and correlations with retention tests. Study 1 (n = 73) investigated the adapted version of the CLS. Study 2 describes the development and validation of the Multidimensional Cognitive Load Scale for Virtual Environments (MCLSVE), with 140 students in higher education. Study 3 tested the generalizability of the results with 121 higher education students in a more complicated VLE. The results provide initial evidence for the validity and reliability of the MCLSVE.

Full citation:

Andersen, M.S., & Makransky, G. (2020). The Validation and Further Development of a Multidimensional Cognitive Load Scale for Virtual Environments. Journal of Computer Assisted Learning

Can an Immersive Virtual Reality Simulation Increase Students’ Interest and Career Aspirations in Science?

Guido Makransky, Gustav B. Petersen, and Sara Klingenberg.

April 1, 2020

British Journal of Educational Technology

Abstract

Science-related competencies are demanded in many fields, but attracting more students to scientific educations remains a challenge. This paper uses two studies to investigate the value of using Immersive Virtual Reality (IVR) laboratory simulations in science education. In Study 1, 99 (52 male, 47 female) 7th (49) and 8th (50) grade students between 13 and 16 years of age used an IVR laboratory safety simulation with a pre- to post-test design. Results indicated an overall increase in interest in science and self-efficacy, but only females reported an increase in science career aspirations. Study 2 was conducted with 131 (47 male, 84 female) second (77) and third (54) year high school students aged 17 to 20 and used an experimental design to compare the value of using an IVR simulation or a video of the simulation on the topic of DNA-analysis. The IVR group reported significantly higher gains from pre- to post-test on interest, and social outcome expectations than the video group. Furthermore, both groups had significant gains in self-efficacy and physical outcome expectations, but the increase in career aspirations and self-outcome expectations did not reach statistical significance. Thus, results from the two studies suggest that appropriately developed and implemented IVR simulations can address some of the challenges currently facing science education.

Full citation:

Makransky, G., Petersen G. B., & Klingenberg, S. (2020). Can an Immersive Virtual Reality Simulation Increase Students’ Interest and Career Aspirations in Science?British Journal of Educational Technology. DOI: 10.1111/bjet.12954

Investigating Representation of Text and Audio in Educational VR using Learning Outcomes and EEG

Sarune Baceviciute, Aske Mottelson, Thomas Terkildsen, and Guido Makransky.

April 1, 2020

Conference on Human Factors in Computing Systems 2020

Abstract

This paper reports findings from a between-subjects experiment that investigates how different learning content representations in virtual environments (VE) affect the process and outcomes of learning. Seventy-eight participants were subjected to an immersive virtual reality (VR) application, where they received identical instructional information, rendered in three different formats: as text in an overlay interface, as text embedded semantically in a virtual book, or as audio. Learning outcome measures, self-reports, and an electroencephalogram (EEG) were used to compare conditions. Results show that reading was superior to listening for the learning outcomes of retention, self-efficacy, and extraneous attention. Reading text from a virtual book was reported to be less cognitively demanding, compared to reading from an overlay interface. EEG analyses show significantly lower theta and higher alpha activation in the audio condition. The findings provide important considerations for the design of educational VR environments.

Full citation:

Baceviciute, S., Mottelson, A., Terkildsen, T., & Makransky, G. (2020). Investigating Representation of Text and Audio in Educational VR using Learning Outcomes and EEG. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI ’20). ACM, New York, NY, USA, 9 pages. DOI: http://dx.doi.org/10.1145/3313831.3376872

Immersive Virtual Reality Increases Liking but Not Learning with a Science Simulation and Generative Learning Strategies Promote Learning in Immersive Virtual Reality

Guido Makransky, Niels K. Andreasen, Sarune Baceviciute, and Richard E. Mayer.

February 1, 2020

Journal of Educational Psychology

Abstract

We investigated the instructional effectiveness of using an interactive and immersive virtual reality (IVR) simulation versus a video for teaching scientific knowledge in 2 between-subjects experiments. In Experiment 1, 131 high school students (84 females) used a science simulation that involved forensic analysis of a collected DNA sample in a virtual laboratory environment rendered in IVR or as a video covering the same material. In Experiment 2, 165 high school students (111 females) replicated the experiment with approximately half of each group being asked to engage in the generative learning strategy of enactment after the lesson—that is, carrying out the learned procedures with concrete manipulatives. Across both experiments, the IVR groups reported significantly higher perceived enjoyment and presence than the video group. However, no significant differences were found between media for procedural knowledge in Experiment 1 and 2, or transfer in Experiment 2. Also, there was no difference in declarative knowledge across media in Experiment 1, and there was a media effect favoring video in Experiment 2 (ηp² = 0.028). Enactment lead to significantly better procedural knowledge (ηp² = 0.144) and transfer (ηp² = 0.088) in the IVR group but not in the video group. In conclusion, learning in IVR is not more effective than learning with video but incorporating generative learning strategies is specifically effective when learning through IVR. The results suggest that the value of IVR for learning science depends on how it is integrated into a classroom lesson.

Full citation:

Makransky, G., Andreasen, N. K, Baceviciute S., & Mayer R. M. (2020). Immersive Virtual Reality Increases Liking but Not Learning with a Science Simulation and Generative Learning Strategies Promote Learning in Immersive Virtual Reality. Journal of Educational Psychology. DOI: 10.1037/edu0000473

Investigating the effect of pre-training when learning through immersive virtual reality and video: A media and methods experiment.

Oliver A. Meyer, Magnus K. Omdahl, and Guido Makransky.

July 15, 2019

Computers & Education (2019)

Abstract

This paper compared learning using different media: VR and Video. The effect of pre-training on learning in either medium was also investigated.
In an experiment we found on one hand that VR is rated higher in perceived enjoyment, and on the other hand that only in the VR condition knowledge, retention and self-efficacy were positively affected by pre-training. Our study therefore suggests that implementing VR in education requires specific instructional methods.

Full citation:

Meyer, O. A., Omdahl, M. K., & Makransky, G. (2019). Investigating the effect of pre-training when learning through immersive virtual reality and video: A media and methods experiment. Computers & Education, 103603.Chicago

Investigating the feasibility of using assessment and explanatory feedback in desktop virtual reality simulations

Guido Makransky, Richard Mayer, Anne Nøremølle, Ainara L. Cordoba, Jakob Wandall, and Mads Bonde.

June 30, 2019

Educational Technology Research and Development

Abstract

There is great potential in making assessment and learning complementary. In this study, we investigated the feasibility of developing a desktop virtual reality (VR) laboratory sim- ulation on the topic of genetics, with integrated assessment using multiple choice ques- tions based on item response theory (IRT) and feedback based on the cognitive theory of multimedia learning. A pre-test post-test design was used to investigate three research questions related to: (1) students’ perceptions of assessment in the form of MC questions within the VR genetics simulation; (2) the fit of the MC questions to the assumptions of the partial credit model (PCM) within the framework of IRT; and (3) if there was a signifi- cant increase in intrinsic motivation, self-efficacy, and transfer from pre- to post-test after using the VR genetics simulation as a classroom learning activity. The sample consisted of 208 undergraduate students taking a medical genetics course. The results showed that assessment items in the form of gamified multiple-choice questions were perceived by 97% of the students to lead to higher levels of understanding, and only 8% thought that they made the simulation more boring. Items within a simulation were found to fit the PCM and the results showed that the sample had a small significant increase in intrinsic motivation and self-efficacy, and a large significant increase in transfer following the genetics simu- lation. It was possible to develop assessments for online educational material and retain the relevance and connectedness of informal assessment while simultaneously serving the communicative and credibility-based functions of formal assessment, which is a great chal- lenge facing education today.

Full citation:

Makransky, G., Mayer, R., Nøremølle, A., Cordoba, A. L., Wandall, J., & Bonde, M. (2019). Investigating the feasibility of using assessment and explanatory feedback in desktop virtual reality simulations. Educational Technology Research and Development, 1-25.

Equivalence of using a desktop virtual reality science simulation at home and in class

Guido Makransky, Richard E. Mayer, Nicola Veitch, Michelle Hood, Karl Bang Christensen, and Helen Gadegaard.

April 11, 2019

PLoS ONE (2019)

Abstract

The use of virtual laboratories is growing as companies and educational institutions try to expand their reach, cut costs, increase student understanding, and provide more accessible hands on training for future scientists. Many new higher education initiatives outsource lab activities so students now perform them online in a virtual environment rather than in a classroom setting, thereby saving time and money while increasing accessibility. In this paper we explored whether the learning and motivational outcomes of interacting with a desktop virtual reality (VR) science lab simulation on the internet at home are equivalent to interacting with the same simulation in class with teacher supervision. A sample of 112 (76 female) university biology students participated in a between-subjects experimental design, in which participants learned at home or in class from the same virtual laboratory simulation on the topic of microbiology. The home and classroom groups did not differ significantly on post-test learning outcome scores, or on self-report measures of intrinsic motivation or self-efficacy. Furthermore, these conclusions remained after accounting for prior knowledge or goal orientation. In conclusion, the results indicate that virtual simulations are learning activities that students can engage in just as effectively outside of the classroom environment.

Full citation:

Makransky G, Mayer RE, Veitch N, Hood M, Christensen KB, Gadegaard H (2019) Equivalence of using a desktop virtual reality science simulation at home and in class. PLoS ONE 14(4): e0214944. https://doi.org/10.1371/journal.pone.0214944

Virtual Reality Instruction Followed by Enactment Can Increase Procedural Knowledge in a Science Lesson

Niels Koch Andreasen, Sarune Baceviciute, Prajakt Pande, and Guido Makransky.

March 23, 2019

2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)

Abstract

A 2×2 between-subjects experiment (a) investigated and compared the instructional effectiveness of immersive virtual reality (VR) versus video as media for teaching scientific procedural knowledge, and (b) examined the efficacy of enactment as a generative learning strategy in combination with the respective instructional media. A total of 117 high school students (74 females) were randomly distributed across four instructional groups — VR and enactment, video and enactment, only VR, and only video. Outcome measures included declarative knowledge, procedural knowledge, knowledge transfer, and subjective ratings of perceived enjoyment. Results indicated that there were no main effects or interactions for the outcomes of declarative knowledge or transfer. However, there was a significant interaction between media and method for the outcome of procedural knowledge with the VR and enactment group having the highest performance. Furthermore, media also seemed to have a significant effect on student perceived enjoyment, indicating that the groups enjoyed the VR simulation significantly more than the video. The results deepen our understanding of how we learn with immersive technology, as well as suggest important implications for implementing VR in schools.

Full citation:

Andreasen N. K., Baceviciute S., Pande P., & Makransky G., (2019). Virtual Reality Instruction Followed by Enactment Can Increase Procedural Knowledge in a Science Lesson. 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 2019, pp. 840-841, doi: 10.1109/VR.2019.8797755.

Measuring presence in video games: An investigation of the potential use of physiological measures as indicators of presence

Thomas S. Terkildsen and Guido Makransky.

February 11, 2019

International Journal of Human-Computer Studies

Abstract

Presence has become an increasingly central component of Games User Research (GUR) as developments in technology continuously make modern video games more conducive to the sensation of ‘being there’ in virtual environments. The quality of games is now commonly evaluated based on how reliably they elicit presence; however, no standardized objective measure of presence currently exists. This study investigated two physio- logical measures, Galvanic Skin Response (GSR) and task-irrelevant Event-Related Potentials (ERPs), as potential objective indicators of presence in games. A total of 34 participants were divided into low or high presence groups based on their self-reported presence evoked from experiencing a horror game while task-irrelevant tones were being played. It was hypothesized that presence is associated with attentional resources being fully ab- sorbed by the game, which would lead to less or insufficient perceptual resources available for processing the concurrent game-irrelevant oddball-task. This effect was expected to manifest as a measurable decrease in early ERP component amplitudes. It was also hypothesized that presence would make players react to emotion-eli- citing events as if they were real, which would result in more GSR peaks throughout the game while not im- pacting event response magnitude. ERP components (N1, MMN and SW), GSR peaks/min and response mag- nitude were compared between the presence groups revealing significant differences in GSR peaks/min and early ERP components of N1 and MMN, but not in GSR response magnitude. The findings support the hypotheses and show that GSR peaks/min, N1 and MMN correlate with presence and have potential as presence indicators.

Full citation:

Terkildsen, T., & Makransky, G. (2019). Measuring presence in video games: An investigation of the potential use of physiological measures as indicators of presence. International Journal of Human-Computer Studies, 126, 64-80.

Investigating the process of learning with desktop virtual reality: A structural equation modeling approach

Guido Makransky and Gustav Bøg Petersen.

February 8, 2019

Computers & Education

Abstract

Virtual reality (VR) is gaining attention for having the potential to enrich students’ educational experiences. However, few studies have investigated the process of learning with VR. With the use of structural equation modeling, this study investigated the affective and cognitive factors that play a role in learning with a desktop VR simulation when pre-to post-test changes in motivation, self-efficacy, and knowledge about genetics are used as outcomes. The sample consisted of 199 university students (120 females), who learned from a desktop VR genetics simulation as a mandatory part of an undergraduate medical genetics course. The results indicated that there were two general paths by which desktop VR led to increases in the amount of learning following a VR lesson: an affective path that went through VR features, presence, intrinsic motivation, and self-efficacy; and a cognitive path that went through VR features, usability, cognitive benefits, and self-efficacy. It is concluded that learners may benefit from desktop VR simulations in which efficacious VR features and a high level of usability are emphasized.

Full citation:

Makransky, G., Bog Petersen G. (2019). Investigating the process of learning with desktop virtual reality: A structural equation modeling approach. Computers & Education. 134, 15-30

Role of subjective and objective measures of cognitive processing during learning in explaining the spatial contiguity effect

Guido Makransky, Thomas S. Terkildsen, and Richard E. Mayer.

January 9, 2019

Learning and Instruction (2019)

Abstract

The main objective of this study was to investigate the potential of combining subjective and objective measures of learning process to uncover the mechanisms underlying the spatial contiguity effect in multimedia learning. The subjective measures of learning process were self-reported cognitive load ratings and the objective measures were eye-tracking and EEG measures. Learning outcome was measured by scores on retention and transfer posttests. A sample of 78 university students participated in a between-subjects design in which a multimedia slideshow lesson on how lightning storms develop was presented either with printed text as a caption at the bottom of each illustration (separated presentation) or with printed text placed next to the corresponding part of each illustration (integrated presentation). Regarding spatial contiguity, the integrated group spent significantly more time looking at the text (d=0.64), but significantly less time looking at irrelevant illustrations (d=1.10), and reported a significantly lower level of extraneous load (d=0.57), compared to the separated group. As expected, they also scored significantly higher on the transfer test (d=0.49). Students who performed best on posttests reported a lower level of extraneous load (d=0.56). Furthermore, EEG based alpha band activity was predictive of intrinsic cognitive load but not predictive of extraneous cognitive load, and EEG based theta ac- tivity was not predictive of intrinsic or extraneous load. The results suggest that subjective and objective measures of cognitive load can provide different information to test the theoretical mechanisms involved in multimedia learning.

Full citation:

Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019). Role of subjective and objective measures of cognitive processing during learning in explaining the spatial contiguity effect. Learning and Instruction, 61, 23-34.

A structural equation modeling investigation of the emotional value of immersive virtual reality in education

Guido Makransky and Lau Lilleholt.

February 22, 2018

Educational Technology Research and Development

Abstract

Virtual reality (VR) is projected to play an important role in education by increasing student engagement and motivation. However, little is known about the impact and utility of immersive VR for administering e-learning tools, or the underlying mechanisms that impact learners’ emotional processes while learning. This paper explores whether differences exist with regard to using either immersive or desktop VR to administer a virtual science learning simulation. We also investigate how the level of immersion impacts perceived learning outcomes using structural equation modeling. The sample consisted of 104 university students (39 females). Significantly higher scores were obtained on 11 of the 13 variables investigated using the immersive VR version of the simulation, with the largest differences occurring with regard to presence and motivation. Furthermore, we identified a model with two general paths by which immersion in VR impacts perceived learning outcomes. Specifically, we discovered an affective path in which immersion predicted presence and positive emotions, and a cognitive path in which immersion fostered a positive cognitive value of the task in line with the control value theory of achievement emotions.

Full citation:

Makransky, G., & Lilleholt, L. (2018). A structural equation modeling investigation of the emotional value of immersive virtual reality in education. Educational Technology Research and Development, 66(5), 1141-1164

Adding immersive virtual reality to a science lab simulation causes more presence but less learning

Guido Makransky, Thomas S. Terkildsen, and Richard E. Mayer.

December 26, 2017

Learning and Instruction

Abstract

Virtual reality (VR) is predicted to create a paradigm shift in education and training, but there is little empirical evidence of its educational value. The main objectives of this study were to determine the consequences of adding immersive VR to virtual learning simulations, and to investigate whether the principles of multimedia learning generalize to immersive VR. Furthermore, electroencephalogram (EEG) was used to obtain a direct measure of cognitive processing during learning. A sample of 52 university students participated in a 2 × 2 experimental cross-panel design wherein students learned from a science simulation via a desktop display (PC) or a head-mounted display (VR); and the simulations contained on-screen text or on-screen text with narration. Across both text versions, students reported being more present in the VR condition (d = 1.30); but they learned less (d = 0.80), and had significantly higher cognitive load based on the EEG measure (d = 0.59). In spite of its motivating properties (as reflected in presence ratings), learning science in VR may overload and distract the learner (as reflected in EEG measures of cognitive load), resulting in less opportunity to build learning outcomes (as reflected in poorer learning outcome test performance).

Full citation:

Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60, 225-236.

Abstract

The present study compared the value of using a virtual learning simulation compared to traditional lessons on the topic of evolution, and investigated if the virtual learning simulation could serve as a catalyst for STEM academic and career development, based on social cognitive career theory. The investigation was conducted using a crossover repeated measures design based on a sample of 128 high school biology/biotech students. The results showed that the virtual learning simulation increased knowledge of evolution significantly, compared to the traditional lesson. No significant differences between the simulation and lesson were found in their ability to increase the non-cognitive measures. Both interventions increased self-efficacy significantly, and none of them had a significant effect on motivation. In addition, the results showed that the simulation increased interest in biology related tasks, but not outcome expectations. The findings suggest that virtual learning simulations are at least as efficient in enhancing learning and self-efficacy as traditional lessons, and high schools can thus use them as supplementary educational methods. In addition, the findings indicate that virtual learning simulations may be a useful tool in enhancing student’s interest in and goals toward STEM related careers.

Full citation:

Thisgaard, M., & Makransky G., (2017). Virtual Learning Simulations in High School: Effects on Cognitive and Non-cognitive Outcomes and Implications on the Development of STEM Academic and Career Choice. 8(805). DOI: 10.3389/fpsyg.2017.00805

Abstract

Presence is one of the most important psychological constructs for understanding human-computer interaction. However, different terminology and operationalizations of presence across fields have plagued the comparability and generalizability of results across studies. Lee's (2004) unified understanding of presence as a multidimensional construct made up of physical, social, and self-presence, has created a unified theory of presence; nevertheless, there are still no psychometrically valid measurement instruments based on the theory. Two studies were conducted that describe the development of a standardized multidimensional measure of presence (the MPS) for a VR learning context based on this theory, and its validation using confirmatory factor analysis and item response theory. The results from Study 1 which included 161 medical students from Denmark indicated that the items used in the MPS measure a three dimensional theoretical model of presence: physical, social, and self-presence. Furthermore, IRT analyses indicated that it was possible to limit the number of items in the MPS to 15 (five items per sub-dimension) while maintaining the construct validity and reliability of the measure. The results of Study 2, which included 118 biology students from Scotland, supported the validity and generalizability of the MPS in a new context.

Full citation:

Makransky, G., Lilleholt, L., & Aaby A., (2017). Development and validation of the Multimodal Presence Scale for virtual reality environments: A confirmatory factor analysis and item response theory approach, Computers in Human Behavior, Volume 72, 2017, Pages 276-285, ISSN 0747-5632, https://doi.org/10.1016/j.chb.2017.02.066.

Simulation based virtual learning environment in medical genetics counselling: an example of bridging the gap between theory and practice in medical education

Guido Makransky, Mads T. Bonde, Julie S. G. Wulff, Jakob Wandall, Michelle Hood, Peter A. Creed, Iben Bache, Asli Silahtaroglu, and Anne Nørremølle.

March 25, 2016

BMC Medical Education

Abstract

Background

Simulation based learning environments are designed to improve the quality of medical education by allowing students to interact with patients, diagnostic laboratory procedures, and patient data in a virtual environment. However, few studies have evaluated whether simulation based learning environments increase students’ knowledge, intrinsic motivation, and self-efficacy, and help them generalize from laboratory analyses to clinical practice and health decision-making.

Methods

An entire class of 300 University of Copenhagen first-year undergraduate students, most with a major in medicine, received a 2-h training session in a simulation based learning environment. The main outcomes were pre- to post- changes in knowledge, intrinsic motivation, and self-efficacy, together with post-intervention evaluation of the effect of the simulation on student understanding of everyday clinical practice were demonstrated.

Results

Knowledge (Cohen’s d = 0.73), intrinsic motivation (d = 0.24), and self-efficacy (d = 0.46) significantly increased from the pre- to post-test. Low knowledge students showed the greatest increases in knowledge (d = 3.35) and self-efficacy (d = 0.61), but a non-significant increase in intrinsic motivation (d = 0.22). The medium and high knowledge students showed significant increases in knowledge (d = 1.45 and 0.36, respectively), motivation (d = 0.22 and 0.31), and self-efficacy (d = 0.36 and 0.52, respectively). Additionally, 90 % of students reported a greater understanding of medical genetics, 82 % thought that medical genetics was more interesting, 93 % indicated that they were more interested and motivated, and had gained confidence by having experienced working on a case story that resembled the real working situation of a doctor, and 78 % indicated that they would feel more confident counseling a patient after the simulation.

Conclusions

The simulation based learning environment increased students’ learning, intrinsic motivation, and self-efficacy (although the strength of these effects differed depending on their pre-test knowledge), and increased the perceived relevance of medical educational activities. The results suggest that simulations can help future generations of doctors transfer new understanding of disease mechanisms gained in virtual laboratory settings into everyday clinical practice.

Full citation:

Makransky, G., Bonde, M.T., Wulff S.G. J., Wandall J., Hood M., Creed, A. P., Bache I., Silahtaroglu A., & Nørremølle A., (2016). Simulation based virtual learning environment in medical genetics counseling: an example of bridging the gap between theory and practice in medical education. BMC Med Educ 16, 98 (2016). https://doi.org/10.1186/s12909-016-0620-6

Improving biotech education through gamified laboratory simulations

Mads T. Bonde, Guido Makransky, Jakob Wandall, Mette V. Larsen, Mikkel Morsing, Hanne Jarmer, and Morten O. A. Sommer.

July 8, 2014

Nature Biotechnology

Abstract

A large proportion of high school and college students indicate that they have little interest in science, and many students graduate with marginal science competencies It has been suggested that this results from an exaggerated focus on memorizing facts, listening passively to lectures and performing 'cookbook' laboratory exercises in science education, rather than stimulating students' natural curiosity, and highlighting the intricate connection between science and “real world problems”. Although several studies have challenged the effectiveness of traditional teaching methodsThese methods continue to dominate science education. This is not only problematic for students but is a major challenge for the biotech industry, which depends on highly educated graduates with up-to-date knowledge and skills.

A recent report published by the US National Research Council regarding the use of computer games and simulations in education analyzed all available studies and concluded that “simulations and games have great potential to improve science learning in elementary, secondary and undergraduate science classrooms”. Moreover, the US Department of Education's National Education Technology Plan states, “The challenge for our education system is to leverage the learning sciences and modern technology to create engaging, relevant and personalized learning experiences for all learners that mirror students' daily lives and the reality of their futures”.

Because laboratory experiments can be expensive, time consuming and occasionally constrained by safety concerns, laboratory courses as an adjunct to classroom lectures are often the first classes to be removed from a curriculum. This is unfortunate because several theoretical science courses benefit from an experimental counterpart. Particularly within biotech, new techniques and methods are constantly enhancing and replacing existing research practices, and these developments soon become essential knowledge for biotech professionals. Nevertheless, the latest equipment and consumables are often prohibitively expensive, making it almost impossible for universities and schools to provide students with access to updated equipment such as next-generation DNA sequencing machines.

In response to this need, several simulations have been developed for science education, most of which focus on symbolic representations of experiments wherein students can alter parameters and simulate different outcomes. De Jong et al. recently reviewed studies comparing physical and simulated laboratory education and concluded that both physical and virtual laboratories “can achieve similar objectives such as exploring the nature of science, developing teamwork abilities, cultivating interest in science, promoting conceptual understanding and developing inquiry skills.” Although physical laboratories are required for students to develop practical laboratory skills, virtual laboratories offer several other advantages, including allowing students to explore unobservable phenomena, enabling learners to conduct a number of experiments in a short period of time and providing adaptive guidance. However, most simulations are primarily focused on accurately imitating physical phenomena and not on optimizing student learning.

A recent literature review identified only a few studies that compared traditional classroom teaching with the use of simulations in biotech teaching between 2001 and 2010. One study reported an increase in students' usage of accurate explanations after using a bioinformatics simulation, and others reported a significant increase in test scores using a simulation based on cell theory. Similarly, a learning effect was demonstrated using the simulation MyDNA, a program that involves a two-dimensional representation of gel electrophoresis wherein students can alter voltage and gel concentrations and then observe the differential speed of DNA fragments.

Educational games are increasingly being used for learning biotech. Sadler et al. reported the implementation of a three-dimensional (3D) biotech educational game (Mission Biotech), wherein gaming features were highlighted. A high learning outcome, particularly with lower-level students, was observed. Research regarding the effectiveness of games for science education is only beginning to emerge, and to our knowledge no prior research studies performed to assess the effectiveness of gamified simulations for enhancing biotech education have included a scientific design with control groups.

We hypothesized that combining gamification elements with simulations may provide an opportunity for even greater gains in learning effectiveness and motivation of biotech students. We developed and tested an advanced laboratory simulation platform based on mathematical algorithms supporting open-ended investigations and combined this with gamification elements such as an immersive 3D universe, storytelling, conversations with fictional characters and a scoring system. We then set out to assess the effect on learning effectiveness and motivation to investigate whether gamified laboratory simulations may be an affordable opportunity for providing state-of-the-art training in biotech.

Full citation:

Bonde, M., Makransky, G., Wandall, J., Larsen V. M., Morsing M., Jarmer H., & Morten O. A. Sommer., (2014). Improving biotech education through gamified laboratory simulations. Nat Biotechnol 32, 694–697 (2014). https://doi.org/10.1038/nbt.2955

To the top