Read what we have recently published.

Why just Experience the Future when you can Change it: Virtual Reality can Increase Pro-Environmental Food Choices through Self-Efficacy

Adéla Plechatá, Thomas Morton, Federico J.A. Perez-Cueto and Guido Makransky

May 31, 2022

Technology, Mind and Behaviour


Immersive Virtual Reality (IVR) has the potential to play an important role in increasing environmental literacy by providing individuals the opportunity to experience plausible scenarios of climate change directly. However, there is currently little evidence for the role of IVR, and for specific design features, in increasing environmental self-efficacy. The main objective of this study was to investigate the effects of an IVR intervention on pro-environmental intentions, knowledge, and transfer. A total of 90 middle school students were randomly assigned to two IVR intervention conditions: 1) Awareness, in which students experience the impact of their current food choices on future environmental change; 2) Awareness + Efficacy, in which students had the opportunity to change their food choices and experience the positive impact of this on future environmental change. Both interventions resulted in significant increases in intentions, knowledge, and transfer. However, the Awareness + Efficacy condition resulted in further significant increases in intentions and transfer than the Awareness condition. Finally, mediation analysis showed that the effect of the Awareness + Efficacy condition on intentions and transfer was fully mediated by self-efficacy. These results suggest that allowing students not just to experience climate change but also to see the positive impact of changed personal choices can maximize the effectiveness of IVR on intentions and transfer.

Full citation:

Plechatá, A., Morton, T., Perez-Cueto, F., Makransky, G. (2022). Why just Experience the Future when you can Change it: Virtual Reality can Increase Pro-Environmental Food Choices through Self-Efficacy.


This study describes and investigates the immersion principle in multimedia learning. A sample of 102 middle school students took a virtual field trip to Greenland via a head mounted display (HMD) or a 2D video as an introductory lesson within a 6-lesson inquiry-based climate change intervention. The HMD group scored significantly higher than the video group on presence (d = 1.43), enjoyment (d = 1.10), interest (d = .57), and retention in an immediate (d = .61) and delayed posttest (d = .70). A structural equation model indicated that enjoyment mediated the pathway from instructional media to immediate posttest, and interest mediated the pathway from instructional media to delayed posttest score, indicating that these factors may play different roles in the learning process with immersive media. This work contributes to the cognitive affective model of immersive learning, and suggests that immersive lessons can have positive longitudinal effects for learning.

Full citation:

Makransky, G., Mayer, R.E. Benefits of Taking a Virtual Field Trip in Immersive Virtual Reality: Evidence for the Immersion Principle in Multimedia Learning. Educ Psychol Rev (2022).

The virtual field trip: Investigating how to optimize immersive virtual learning in climate change education

Gustav B. Petersen, Sara Klingenberg, Richard E. Mayer, and Guido Makransky.

December 6, 2020

British Journal of Educational Technology


Immersive Virtual Reality (IVR) is being used for educational virtual field trips (VFTs) involving scenarios that may be too difficult, dangerous or expensive to experience in real life. We implemented an immersive VFT within the investigation phase of an inquiry‐based learning (IBL) climate change intervention. Students investigated the consequences of climate change by virtually traveling to Greenland and exploring albedo and greenhouse effects first hand. A total of 102 seventh and eighth grade students were randomly assigned to one of two instructional conditions: (1) narrated pretraining followed by IVR exploration or (2) the same narrated training material integrated within the IVR exploration. Students in both conditions showed significant increases in declarative knowledge, self‐efficacy, interest, STEM intentions, outcome expectations and intentions to change behavior from the pre‐ to post‐assessment. However, there was a significant difference between conditions favoring the pretraining group on a transfer test consisting of an oral presentation to a fictitious UN panel. The findings suggest that educators can choose to present important prerequisite learning content before or during a VFT. However, adding pretraining may lead to better transfer test performance, presumably because it helps reduce cognitive load while learning in IVR.

Full citation:

Petersen, G.B., Klingenberg, S., Mayer, R.E., & Makransky, G. (2020), The virtual field trip: Investigating how to optimize immersive virtual learning in climate change education. Br J Educ Technol. doi:10.1111/bjet.12991

To the top